This solution uses DFS (Depth First Search) Algorithm and looks for a unique solution to the given Sudoku Puzzle.
DFS Solution
/**
* @param {character[][]} board
* @return {void} Do not return anything, modify board in-place instead.
*/
const solveSudoku = function(board) {
canSolveCheck(board, 0, 0);
};
// sudoku solver (backtracking) Time complexity = O(9^m) m = number of spaces to be filled.
const canSolveCheck = (board, x, y) => {
if (x === 9) {
return true;
} else if (y === 9) {
return canSolveCheck(board, x + 1, 0);
}
if (board[x][y] !== '.') {
return canSolveCheck(board, x, y + 1);
} else {
for (let i = 1; i <= 9; i++) {
board[x][y] = i + '';
if (valid(board, x, y) && canSolveCheck(board, x, y + 1)) {
return true;
}
board[x][y] = '.';
}
return false;
}
};
const valid = (board, x, y) => {
const i = board[x][y];
for (let k = 0; k < 9; k++) {
if (k !== y && board[x][k] === i) {
return false;
}
if (k !== x && board[k][y] === i) {
return false;
}
const row = Math.floor(x / 3) * 3 + Math.floor(k / 3);
const col = Math.floor(y / 3) * 3 + (k % 3);
if (!(row === x && col === y) && board[row][col] === i) {
return false;
}
}
return true;
};
Using a Map
Instead of running valid() for all possible values, we can pre-compute and check if the current value is valid.
const solveSudoku = function(board) {
canSolveCheckMemoryOptimized(board, 0, 0);
};
const canSolveCheckMemoryOptimized = (board, x, y) => {
if (x === 9) {
return true;
} else if (y === 9) {
return canSolveCheck(board, x + 1, 0);
}
if (board[x][y] !== '.') {
return canSolveCheck(board, x, y + 1);
} else {
const obj = {};
buildObj(board, x, y, obj);
for (let i = 1; i <= 9; i++) {
board[x][y] = i + '';
if (!(board[x][y] in obj) && canSolveCheck(board, x, y + 1)) {
return true;
}
board[x][y] = '.';
}
return false;
}
};
const buildObj = (board, x, y, obj) => {
for (let k = 0; k < 9; k++) {
obj[board[x][k]] = true;
obj[board[k][y]] =true;
const row = Math.floor(x / 3) * 3 + Math.floor(k / 3);
const col = Math.floor(y / 3) * 3 + (k % 3);
obj[board[row][col]] = true;
}
};
Another alternate solution would be to precompute these values into lists of Maps.
Java
This solution uses DFS (Depth First Search) Algorithm and looks for a unique solution to the given Sudoku Puzzle.
DFS Solution
class Solution {
public void solveSudoku(char[][] board) {
if (solve(board, 0, 0)) {
System.out.println("Solved");
}
}
public boolean solve(char[][] board, int row, int col) {
if (row > 8)
return true;
if (col > 8)
return solve(board, row + 1, 0);
if (board[row][col] != '.') {
return solve(board, row, col + 1);
} else {
for (int k = 1; k <= 9; k++) {
board[row][col] = (char)(k + '0');
if (isValid(board, row, col) && solve(board, row, col + 1)) {
return true;
} else
board[row][col] = '.';
}
}
return false;
}
public boolean isValid(char[][] board, int row, int col) {
for (int i = 0; i < 9; i++) {
if (i != col && board[row][i] == board[row][col])
return false;
}
for (int j = 0; j < 9; j++) {
if (j != row && board[j][col] == board[row][col])
return false;
}
int x = (row / 3) * 3;
int y = (col / 3) * 3;
for (int m = x; m < x + 3; m++) {
for (int n = y; n < y + 3; n++) {
if ((m != row || n != col) && board[m][n] == board[row][col])
return false;
}
}
return true;
}
}
Using HashSet
Instead of running valid() for all possible values, we can pre-compute and check if the current value is valid.
class Solution {
public void solveSudoku(char[][] board) {
if (solve(board, 0, 0)) {
System.out.println("Solved");
}
}
public boolean solve(char[][] board, int row, int col) {
if (row > 8)
return true;
if (col > 8)
return solve(board, row + 1, 0);
if (board[row][col] != '.') {
return solve(board, row, col + 1);
} else {
HashSet < Character > set = new HashSet < Character > ();
buildMaps(board, set, row, col);
for (int k = 1; k <= 9; k++) {
board[row][col] = (char)(k + '0');
if (!set.contains(board[row][col]) && solve(board, row, col + 1)) {
return true;
} else
board[row][col] = '.';
}
}
return false;
}
public void buildMaps(char[][] board, HashSet < Character > set, int row, int col) {
for (int i = 0; i < 9; i++) {
set.add(board[row][i]);
}
for (int j = 0; j < 9; j++) {
set.add(board[j][col]);
}
int x = (row / 3) * 3;
int y = (col / 3) * 3;
for (int m = x; m < x + 3; m++) {
for (int n = y; n < y + 3; n++) {
set.add(board[m][n]);
}
}
}
}
Another alternate solution would be to precompute these values into lists of Hashsets.